Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 14 vom: 11. Apr., Seite e1705013
1. Verfasser: Cooke, Megan E (VerfasserIn)
Weitere Verfasser: Jones, Simon W, Ter Horst, Britt, Moiemen, Naiem, Snow, Martyn, Chouhan, Gurpreet, Hill, Lisa J, Esmaeli, Maryam, Moakes, Richard J A, Holton, James, Nandra, Rajpal, Williams, Richard L, Smith, Alan M, Grover, Liam M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review biomaterials hydrogels regenerative medicine soft materials structuring Biocompatible Materials Hydrogels Polymers Proteins
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon-like structures. These structures then weakly interact at zero shear forming a solid-like material. The resulting self-healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger-scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration
Beschreibung:Date Completed 28.01.2019
Date Revised 07.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201705013