|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM280714866 |
003 |
DE-627 |
005 |
20231225025940.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201706738
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0935.xml
|
035 |
|
|
|a (DE-627)NLM280714866
|
035 |
|
|
|a (NLM)29411908
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Xiandi
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Recently, the quest for new highly stretchable transparent tactile sensors with large-scale integration and rapid response time continues to be a great impetus to research efforts to expand the promising applications in human-machine interactions, artificial electronic skins, and smart wearable equipment. Here, a self-powered, highly stretchable, and transparent triboelectric tactile sensor with patterned Ag-nanofiber electrodes for detecting and spatially mapping trajectory profiles is reported. The Ag-nanofiber electrodes demonstrate high transparency (>70%), low sheet resistance (1.68-11.1 Ω □-1 ), excellent stretchability, and stability (>100% strain). Based on the electrode patterning and device design, an 8 × 8 triboelectric sensor matrix is fabricated, which works well under high strain owing to the effect of the electrostatic induction. Using cross-locating technology, the device can execute more rapid tactile mapping, with a response time of 70 ms. In addition, the object being detected can be made from any commonly used materials or can even be human hands, indicating that this device has widespread potential in tactile sensing and touchpad technology applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a metallized nanofiber
|
650 |
|
4 |
|a self-powered
|
650 |
|
4 |
|a stretchable
|
650 |
|
4 |
|a tactile sensor
|
650 |
|
4 |
|a transparent
|
700 |
1 |
|
|a Zhang, Yufei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaojia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huo, Zhihao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiaoyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Que, Miaoling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Zhengchun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Caofeng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 12 vom: 15. März, Seite e1706738
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:12
|g day:15
|g month:03
|g pages:e1706738
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201706738
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 12
|b 15
|c 03
|h e1706738
|