Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity

Needle and fiber-optic hydrophones have frequency-dependent sensitivity, which can result in substantial distortion of nonlinear or broadband pressure pulses. A rigid cylinder model for needle and fiber-optic hydrophones was used to predict this distortion. The model was compared with measurements o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 65(2018), 2 vom: 30. Feb., Seite 137-148
1. Verfasser: Wear, Keith A (VerfasserIn)
Weitere Verfasser: Liu, Yunbo, Harris, Gerald R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, U.S. Gov't, P.H.S.
Beschreibung
Zusammenfassung:Needle and fiber-optic hydrophones have frequency-dependent sensitivity, which can result in substantial distortion of nonlinear or broadband pressure pulses. A rigid cylinder model for needle and fiber-optic hydrophones was used to predict this distortion. The model was compared with measurements of complex sensitivity for a fiber-optic hydrophone and three needle hydrophones with sensitive element sizes ( ) of 100, 200, 400, and . Theoretical and experimental sensitivities agreed to within 12 ± 3% [root-mean-square (RMS) normalized magnitude ratio] and 8° ± 3° (RMS phase difference) for the four hydrophones over the range from 1 to 10 MHz. The model predicts that distortions in peak positive pressure can exceed 20% when and spectral index (SI) >7% and can exceed 40% when and SI >14%, where is the wavelength of the fundamental component and SI is the fraction of power spectral density contained in harmonics. The model predicts that distortions in peak negative pressure can exceed 15% when . Measurements of pulse distortion using a 2.25 MHz source and needle hydrophones with , 400, and agreed with the model to within a few percent on the average for SI values up to 14%. This paper 1) identifies conditions for which needle and fiber-optic hydrophones produce substantial distortions in acoustic pressure pulse measurements and 2) offers a practical deconvolution method to suppress these distortions
Beschreibung:Date Completed 10.05.2019
Date Revised 08.10.2019
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2017.2778566