|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM280455526 |
003 |
DE-627 |
005 |
20231225025352.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erx487
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0934.xml
|
035 |
|
|
|a (DE-627)NLM280455526
|
035 |
|
|
|a (NLM)29385517
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zwanenburg, Binne
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Strigolactones
|b new plant hormones in the spotlight
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.09.2019
|
500 |
|
|
|a Date Revised 25.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The development and growth of plants are regulated by interplay of a plethora of complex chemical reactions in which plant hormones play a pivotal role. In recent years, a group of new plant hormones, namely strigolactones (SLs), was discovered and identified. The first SL, strigol, was isolated in 1966, but it took almost 20 years before the details of its structure were fully elucidated. At present, two families of SLs are known, one having the stereochemistry of (+)-strigol and the other that of (-)-orobanchol, the most abundant naturally occurring SL. The most well-known bioproperty of SLs is the germination of seeds of the parasitic weeds Striga and Orobanche. It is evident that SLs are going to play a prominent role in modern molecular botany. In this review, relevant molecular and bioproperties of SLs are discussed. Items of importance are the effect of stereochemistry, structure-activity relationships, design and synthesis of analogues with a simple structure, but with retention of bioactivity, introduction of fluorescent labels into SLs, biosynthetic origin of SLs, mode of action in plants, application in agriculture for the control of parasitic weeds, stimulation of the branching of arbuscular mycorrhizal (AM) fungi, and the control of plant architecture. The future potential of SLs in molecular botany is highlighted
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
7 |
|a Lactones
|2 NLM
|
650 |
|
7 |
|a Plant Growth Regulators
|2 NLM
|
700 |
1 |
|
|a Blanco-Ania, Daniel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 69(2018), 9 vom: 23. Apr., Seite 2205-2218
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:69
|g year:2018
|g number:9
|g day:23
|g month:04
|g pages:2205-2218
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erx487
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 69
|j 2018
|e 9
|b 23
|c 04
|h 2205-2218
|