Stacked Denoising Tensor Auto-Encoder for Action Recognition With Spatiotemporal Corruptions

Spatially or temporally corrupted action videos are impractical for recognition via vision or learning models. It usually happens when streaming data are captured from unintended moving cameras, which bring occlusion or camera vibration and accordingly result in arbitrary loss of spatiotemporal info...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 4 vom: 20. Apr., Seite 1878-1887
1. Verfasser: Jia, Chengcheng (VerfasserIn)
Weitere Verfasser: Shao, Ming, Li, Sheng, Zhao, Handong, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM28007977X
003 DE-627
005 20231225024520.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2781299  |2 doi 
028 5 2 |a pubmed24n0933.xml 
035 |a (DE-627)NLM28007977X 
035 |a (NLM)29346101 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Chengcheng  |e verfasserin  |4 aut 
245 1 0 |a Stacked Denoising Tensor Auto-Encoder for Action Recognition With Spatiotemporal Corruptions 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spatially or temporally corrupted action videos are impractical for recognition via vision or learning models. It usually happens when streaming data are captured from unintended moving cameras, which bring occlusion or camera vibration and accordingly result in arbitrary loss of spatiotemporal information. In reality, it is intractable to deal with both spatial and temporal corruptions at the same time. In this paper, we propose a coupled stacked denoising tensor auto-encoder (CSDTAE) model, which approaches this corruption problem in a divide-and-conquer fashion by jointing both the spatial and temporal schemes together. In particular, each scheme is a SDTAE designed to handle either spatial or temporal corruption, respectively. SDTAE is composed of several blocks, each of which is a denoising tensor auto-encoder (DTAE). Therefore, CSDTAE is designed based on several DTAE building blocks to solve the spatiotemporal corruption problem simultaneously. In one DTAE, the video features are represented as a high-order tensor to preserve the spatiotemporal structure of data, where the temporal and spatial information are processed separately in different hidden layers via tensor unfolding. In summary, DTAE explores the spatial and temporal structure of the tensor representation, and SDTAE handles different corrupted ratios progressively to extract more discriminative features. CSDTAE couples the temporal and spatial corruptions of the same data through a thorough step-by-step procedure based on canonical correlation analysis, which integrates the two sub-problems into one problem. The key point is solving the spatiotemporal corruption in one model by considering them as noises in either spatial or temporal direction. Extensive experiments on three action data sets demonstrate the effectiveness of our model, especially when large volumes of corruption in the video 
650 4 |a Journal Article 
700 1 |a Shao, Ming  |e verfasserin  |4 aut 
700 1 |a Li, Sheng  |e verfasserin  |4 aut 
700 1 |a Zhao, Handong  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 4 vom: 20. Apr., Seite 1878-1887  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:4  |g day:20  |g month:04  |g pages:1878-1887 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2781299  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 4  |b 20  |c 04  |h 1878-1887