Change Detection in Heterogenous Remote Sensing Images via Homogeneous Pixel Transformation

The change detection in heterogeneous remote sensing images remains an important and open problem for damage assessment. We propose a new change detection method for heterogeneous images (i.e., SAR and optical images) based on homogeneous pixel transformation (HPT). HPT transfers one image from its...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 4 vom: 20. Apr., Seite 1822-1834
1. Verfasser: Liu, Zhunga (VerfasserIn)
Weitere Verfasser: Li, Gang, Mercier, Gregoire, He, You, Pan, Quan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The change detection in heterogeneous remote sensing images remains an important and open problem for damage assessment. We propose a new change detection method for heterogeneous images (i.e., SAR and optical images) based on homogeneous pixel transformation (HPT). HPT transfers one image from its original feature space (e.g., gray space) to another space (e.g., spectral space) in pixel-level to make the pre-event and post-event images represented in a common space for the convenience of change detection. HPT consists of two operations, i.e., the forward transformation and the backward transformation. In forward transformation, for each pixel of pre-event image in the first feature space, we will estimate its mapping pixel in the second space corresponding to post-event image based on the known unchanged pixels. A multi-value estimation method with noise tolerance is introduced to determine the mapping pixel using -nearest neighbors technique. Once the mapping pixels of pre-event image are available, the difference values between the mapping image and the post-event image can be directly calculated. After that, we will similarly do the backward transformation to associate the post-event image with the first space, and one more difference value for each pixel will be obtained. Then, the two difference values are combined to improve the robustness of detection with respect to the noise and heterogeneousness (modality difference) of images. Fuzzy-c means clustering algorithm is employed to divide the integrated difference values into two clusters: changed pixels and unchanged pixels. This detection results may contain some noisy regions (i.e., small error detections), and we develop a spatial-neighbor-based noise filter to further reduce the false alarms and missing detections using belief functions theory. The experiments for change detection with real images (e.g., SPOT, ERS, and NDVI) during a flood in U.K. are given to validate the effectiveness of the proposed method
Beschreibung:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2784560