Iterative Graph Seeking for Object Tracking

To effectively solve the challenges in object tracking, such as large deformation and severe occlusion, many existing methods use graph-based models to capture target part relations, and adopt a sequential scheme of target part selection, part matching, and state estimation. However, such methods ha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 4 vom: 20. Apr., Seite 1809-1821
1. Verfasser: Du, Dawei (VerfasserIn)
Weitere Verfasser: Wen, Longyin, Qi, Honggang, Huang, Qingming, Tian, Qi, Lyu, Siwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM28007963X
003 DE-627
005 20250222224937.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2785626  |2 doi 
028 5 2 |a pubmed25n0933.xml 
035 |a (DE-627)NLM28007963X 
035 |a (NLM)29346096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Dawei  |e verfasserin  |4 aut 
245 1 0 |a Iterative Graph Seeking for Object Tracking 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To effectively solve the challenges in object tracking, such as large deformation and severe occlusion, many existing methods use graph-based models to capture target part relations, and adopt a sequential scheme of target part selection, part matching, and state estimation. However, such methods have two major drawbacks: 1) inaccurate part selection leads to performance deterioration of part matching and state estimation and 2) there are insufficient effective global constraints for local part selection and matching. In this paper, we propose a new object tracking method based on iterative graph seeking, which integrate target part selection, part matching, and state estimation using a unified energy minimization framework. Our method also incorporates structural information in local parts variations using the global constraint. We devise an alternative iteration scheme to minimize the energy function for searching the most plausible target geometric graph. Experimental results on several challenging benchmarks (i.e., VOT2015, OTB2013, and OTB2015) demonstrate improved performance and robustness in comparison with existing algorithms 
650 4 |a Journal Article 
700 1 |a Wen, Longyin  |e verfasserin  |4 aut 
700 1 |a Qi, Honggang  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Lyu, Siwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 4 vom: 20. Apr., Seite 1809-1821  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:4  |g day:20  |g month:04  |g pages:1809-1821 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2785626  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 4  |b 20  |c 04  |h 1809-1821