Chitosan-Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions

In this study, the influence of the chitosan immobilization method on the properties of final hybrid materials was performed. Chitosan was immobilized on the surface of mesoporous (ChS2) and fumed silica (ChS3) by physical adsorption and the sol-gel method (ChS1). It was found that physical immobili...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 34(2018), 6 vom: 13. Feb., Seite 2258-2273
1. Verfasser: Blachnio, Magdalena (VerfasserIn)
Weitere Verfasser: Budnyak, Tetyana M, Derylo-Marczewska, Anna, Marczewski, Adam W, Tertykh, Valentin A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Azo Compounds Benzenesulfonates acid orange 8 35B1184HXB Silicon Dioxide 7631-86-9 acid red 88 7Z2135Z4K4 mehr... Chitosan 9012-76-4
LEADER 01000caa a22002652 4500
001 NLM28007817X
003 DE-627
005 20250222224918.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.7b04076  |2 doi 
028 5 2 |a pubmed25n0933.xml 
035 |a (DE-627)NLM28007817X 
035 |a (NLM)29345945 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Blachnio, Magdalena  |e verfasserin  |4 aut 
245 1 0 |a Chitosan-Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2018 
500 |a Date Revised 16.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this study, the influence of the chitosan immobilization method on the properties of final hybrid materials was performed. Chitosan was immobilized on the surface of mesoporous (ChS2) and fumed silica (ChS3) by physical adsorption and the sol-gel method (ChS1). It was found that physical immobilization of chitosan allows to obtain hybrid composites (ChS) with a homogeneous distribution of polymer on the surface, relatively wide pores, and specific surface area of about 170 m2/g, pHPZC = 5.7 for ChS3 and 356 m2/g and pHPZC = 6.0 for ChS2. The microporous chitosan-silica material with a specific surface area of 600 m2/g and a more negatively charged surface (pHPZC = 4.2) was obtained by the sol-gel reaction. The mechanisms of azo dye adsorption were studied, and the correlation with the composite structure was distinguished. The generalized Langmuir equation and its special cases, that is, Langmuir-Freundlich and Langmuir equations, were applied for the analysis of adsorption isotherm data. The adsorption study showed that physically adsorbed chitosan (ChS1 and ChS2) on a silica surface has a higher sorption capacity, for example, 0.48 mmol/g for the acid red 88 (AR88) dye (ChS2) and 0.23 mmol/g for the acid orange 8 (AO8) dye (ChS1), compared to the composite obtained by the sol-gel method [ChS1, 0.05 mmol/g for the AO8 dye]. For a deeper understanding of the behavior of immobilized chitosan in the adsorption processes, various kinetic equations were applied: first-order, second-order, mixed 1,2-order (MOE), multiexponential, and fractal-like MOE as well as intraparticle and pore diffusion model equations. In the case of AO8 dye, the adsorption rates were differentiated for three composites: for ChS3, 50% of the dye was removed from the solution after merely 5 min and almost 90% after 80 min. The slowest adsorption process controlled by the diffusion rate of dye molecules into the internal space of the pore structure was found for ChS1 (225 min halftime). In the case of ChS2, the rates for various dyes change in the following order: acid orange (AO7) > orange G (OG) > acid red 1 (AR1) > AR88 > AO8 (halftimes: 10.5 < 15.7 < 23.7 < 34.9 < 42.9 min) 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Azo Compounds  |2 NLM 
650 7 |a Benzenesulfonates  |2 NLM 
650 7 |a acid orange 8  |2 NLM 
650 7 |a 35B1184HXB  |2 NLM 
650 7 |a Silicon Dioxide  |2 NLM 
650 7 |a 7631-86-9  |2 NLM 
650 7 |a acid red 88  |2 NLM 
650 7 |a 7Z2135Z4K4  |2 NLM 
650 7 |a Chitosan  |2 NLM 
650 7 |a 9012-76-4  |2 NLM 
700 1 |a Budnyak, Tetyana M  |e verfasserin  |4 aut 
700 1 |a Derylo-Marczewska, Anna  |e verfasserin  |4 aut 
700 1 |a Marczewski, Adam W  |e verfasserin  |4 aut 
700 1 |a Tertykh, Valentin A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 34(2018), 6 vom: 13. Feb., Seite 2258-2273  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:34  |g year:2018  |g number:6  |g day:13  |g month:02  |g pages:2258-2273 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.7b04076  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 34  |j 2018  |e 6  |b 13  |c 02  |h 2258-2273