Preparation of Nano Au and Pt Alloy Microspheres Decorated with Reduced Graphene Oxide for Nonenzymatic Hydrogen Peroxide Sensing

The flourish of nanotechnology has brought new vitality to the research and development of electrochemical sensing materials. In this work, we successfully synthesized Nano Au and Pt alloy microspheres decorated with reduced graphene oxide (RGO/nAPAMSs) by a simple, facile, and eco-friendly one-step...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 6 vom: 13. Feb., Seite 2235-2244
1. Verfasser: Bai, Zhixue (VerfasserIn)
Weitere Verfasser: Dong, Wenhao, Ren, Yipeng, Zhang, Cong, Chen, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The flourish of nanotechnology has brought new vitality to the research and development of electrochemical sensing materials. In this work, we successfully synthesized Nano Au and Pt alloy microspheres decorated with reduced graphene oxide (RGO/nAPAMSs) by a simple, facile, and eco-friendly one-step reduction strategy for the fabrication of highly sensitive nonenzymatic H2O2 sensing interfaces. Energy-dispersive X-ray spectroscopy mapping (EDX mapping), energy-dispersive X-ray spectroscopy analysis (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), and X-ray diffraction spectrum (XRD) were employed to characterize RGO/nAPAMSs from a microscopic perspective. The results of cyclic voltammetry and chronoamperometry exhibited excellent electrochemical behaviors toward H2O2, with a rapid response time within 5 s, remarkable sensitivity of 1117.0 μA mM-1 cm-2, wide linear range of 0.005 to 4.0 mM and lower detection limit of 0.008 μM (S/N = 3), which provide RGO/nAPAMS not only a promising prospect for the quantitative detection of H2O2 but also a potential application in other fields of sensors. Moreover, further analysis showed the principles of the superior H2O2 sensing performance of RGO/nAPAMSs. This discovery provides a significant contribution to future study in nonenzymatic H2O2 sensing based on Nano Pt, Nano Au noble metal electrocatalysts
Beschreibung:Date Completed 11.05.2018
Date Revised 11.05.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b02626