Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 9 vom: 15. März
1. Verfasser: Tan, Chaoliang (VerfasserIn)
Weitere Verfasser: Luo, Zhimin, Chaturvedi, Apoorva, Cai, Yongqing, Du, Yonghua, Gong, Yue, Huang, Ying, Lai, Zhuangchai, Zhang, Xiao, Zheng, Lirong, Qi, Xiaoying, Goh, Min Hao, Wang, Jie, Han, Shikui, Wu, Xue-Jun, Gu, Lin, Kloc, Christian, Zhang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MoS2, MoSSe hydrogen evolution metallic 1T phase nanodots transition metal dichalcogenides
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanostructured transition metal dichalcogenides (TMDs) are proven to be efficient and robust earth-abundant electrocatalysts to potentially replace precious platinum-based catalysts for the hydrogen evolution reaction (HER). However, the catalytic efficiency of reported TMD catalysts is still limited by their low-density active sites, low conductivity, and/or uncleaned surface. Herein, a general and facile method is reported for high-yield, large-scale production of water-dispersed, ultrasmall-sized, high-percentage 1T-phase, single-layer TMD nanodots with high-density active edge sites and clean surface, including MoS2 , WS2 , MoSe2 , Mo0.5 W0.5 S2 , and MoSSe, which exhibit much enhanced electrochemical HER performances as compared to their corresponding nanosheets. Impressively, the obtained MoSSe nanodots achieve a low overpotential of -140 mV at current density of 10 mA cm-2 , a Tafel slope of 40 mV dec-1 , and excellent long-term durability. The experimental and theoretical results suggest that the excellent catalytic activity of MoSSe nanodots is attributed to the high-density active edge sites, high-percentage metallic 1T phase, alloying effect and basal-plane Se-vacancy. This work provides a universal and effective way toward the synthesis of TMD nanostructures with abundant active sites for electrocatalysis, which can also be used for other applications such as batteries, sensors, and bioimaging
Beschreibung:Date Completed 01.08.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201705509