Surface Engineering for Extremely Enhanced Charge Separation and Photocatalytic Hydrogen Evolution on g-C3 N4
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
| Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 9 vom: 12. März |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2018
|
| Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
| Sujets: | Journal Article built-in electric fields carbon nitride density functional theory gradual doping photocatalytic hydrogen evolution |
| Résumé: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reinforcing the carrier separation is the key issue to maximize the photocatalytic hydrogen evolution (PHE) efficiency of graphitic carbon nitride (g-C3 N4 ). By a surface engineering of gradual doping of graphited carbon rings within g-C3 N4 , suitable energy band structures and built-in electric fields are established. Photoinduced electrons and holes are impelled into diverse directions, leading to a 21-fold improvement in the PHE rate |
|---|---|
| Description: | Date Completed 01.08.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.201705060 |