No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation

In this paper, we propose a novel no reference quality assessment method by incorporating statistical luminance and texture features (NRLT) for screen content images (SCIs) with both local and global feature representation. The proposed method is designed inspired by the perceptual property of the h...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 4 vom: 15. Apr., Seite 1600-1610
1. Verfasser: Fang, Yuming (VerfasserIn)
Weitere Verfasser: Yan, Jiebin, Li, Leida, Wu, Jinjian, Lin, Weisi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM279869177
003 DE-627
005 20231225024031.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2781307  |2 doi 
028 5 2 |a pubmed24n0932.xml 
035 |a (DE-627)NLM279869177 
035 |a (NLM)29324414 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Yuming  |e verfasserin  |4 aut 
245 1 0 |a No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel no reference quality assessment method by incorporating statistical luminance and texture features (NRLT) for screen content images (SCIs) with both local and global feature representation. The proposed method is designed inspired by the perceptual property of the human visual system (HVS) that the HVS is sensitive to luminance change and texture information for image perception. In the proposed method, we first calculate the luminance map through the local normalization, which is further used to extract the statistical luminance features in global scope. Second, inspired by existing studies from neuroscience that high-order derivatives can capture image texture, we adopt four filters with different directions to compute gradient maps from the luminance map. These gradient maps are then used to extract the second-order derivatives by local binary pattern. We further extract the texture feature by the histogram of high-order derivatives in global scope. Finally, support vector regression is applied to train the mapping function from quality-aware features to subjective ratings. Experimental results on the public large-scale SCI database show that the proposed NRLT can achieve better performance in predicting the visual quality of SCIs than relevant existing methods, even including some full reference visual quality assessment methods 
650 4 |a Journal Article 
700 1 |a Yan, Jiebin  |e verfasserin  |4 aut 
700 1 |a Li, Leida  |e verfasserin  |4 aut 
700 1 |a Wu, Jinjian  |e verfasserin  |4 aut 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 4 vom: 15. Apr., Seite 1600-1610  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:4  |g day:15  |g month:04  |g pages:1600-1610 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2781307  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 4  |b 15  |c 04  |h 1600-1610