Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 8 vom: 21. Feb.
1. Verfasser: Qi, Yue (VerfasserIn)
Weitere Verfasser: Deng, Bing, Guo, Xiao, Chen, Shulin, Gao, Jing, Li, Tianran, Dou, Zhipeng, Ci, Haina, Sun, Jingyu, Chen, Zhaolong, Wang, Ruoyu, Cui, Lingzhi, Chen, Xudong, Chen, Ke, Wang, Huihui, Wang, Sheng, Gao, Peng, Rummeli, Mark H, Peng, Hailin, Zhang, Yanfeng, Liu, Zhongfan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Faraday cages laid-down graphene plasma-enhanced chemical vapor deposition vertical graphene
LEADER 01000naa a22002652 4500
001 NLM279815026
003 DE-627
005 20231225023909.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201704839  |2 doi 
028 5 2 |a pubmed24n0932.xml 
035 |a (DE-627)NLM279815026 
035 |a (NLM)29318672 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Yue  |e verfasserin  |4 aut 
245 1 0 |a Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Plasma-enhanced chemical vapor deposition (PECVD) is an applicable route to achieve low-temperature growth of graphene, typically shaped like vertical nanowalls. However, for transparent electronic applications, the rich exposed edges and high specific surface area of vertical graphene (VG) nanowalls can enhance the carrier scattering and light absorption, resulting in high sheet resistance and low transmittance. Thus, the synthesis of laid-down graphene (LG) is imperative. Here, a Faraday cage is designed to switch graphene growth in PECVD from the vertical to the horizontal direction by weakening ion bombardment and shielding electric field. Consequently, laid-down graphene is synthesized on low-softening-point soda-lime glass (6 cm × 10 cm) at ≈580 °C. This is hardly realized through the conventional PECVD or the thermal chemical vapor deposition methods with the necessity of high growth temperature (1000 °C-1600 °C). Laid-down graphene glass has higher transparency, lower sheet resistance, and much improved macroscopic uniformity when compare to its vertical graphene counterpart and it performs better in transparent heating devices. This will inspire the next-generation applications in low-cost transparent electronics 
650 4 |a Journal Article 
650 4 |a Faraday cages 
650 4 |a laid-down graphene 
650 4 |a plasma-enhanced chemical vapor deposition 
650 4 |a vertical graphene 
700 1 |a Deng, Bing  |e verfasserin  |4 aut 
700 1 |a Guo, Xiao  |e verfasserin  |4 aut 
700 1 |a Chen, Shulin  |e verfasserin  |4 aut 
700 1 |a Gao, Jing  |e verfasserin  |4 aut 
700 1 |a Li, Tianran  |e verfasserin  |4 aut 
700 1 |a Dou, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Ci, Haina  |e verfasserin  |4 aut 
700 1 |a Sun, Jingyu  |e verfasserin  |4 aut 
700 1 |a Chen, Zhaolong  |e verfasserin  |4 aut 
700 1 |a Wang, Ruoyu  |e verfasserin  |4 aut 
700 1 |a Cui, Lingzhi  |e verfasserin  |4 aut 
700 1 |a Chen, Xudong  |e verfasserin  |4 aut 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Wang, Huihui  |e verfasserin  |4 aut 
700 1 |a Wang, Sheng  |e verfasserin  |4 aut 
700 1 |a Gao, Peng  |e verfasserin  |4 aut 
700 1 |a Rummeli, Mark H  |e verfasserin  |4 aut 
700 1 |a Peng, Hailin  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanfeng  |e verfasserin  |4 aut 
700 1 |a Liu, Zhongfan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 8 vom: 21. Feb.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:8  |g day:21  |g month:02 
856 4 0 |u http://dx.doi.org/10.1002/adma.201704839  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 8  |b 21  |c 02