Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 9 vom: 15. März
1. Verfasser: Hu, Miao (VerfasserIn)
Weitere Verfasser: Graves, Catherine E, Li, Can, Li, Yunning, Ge, Ning, Montgomery, Eric, Davila, Noraica, Jiang, Hao, Williams, R Stanley, Yang, J Joshua, Xia, Qiangfei, Strachan, John Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article crossbar arrays memristor metal oxide neuromorphic computing
LEADER 01000caa a22002652 4500
001 NLM279814968
003 DE-627
005 20250222215604.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201705914  |2 doi 
028 5 2 |a pubmed25n0932.xml 
035 |a (DE-627)NLM279814968 
035 |a (NLM)29318659 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Miao  |e verfasserin  |4 aut 
245 1 0 |a Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible 
650 4 |a Journal Article 
650 4 |a crossbar arrays 
650 4 |a memristor 
650 4 |a metal oxide 
650 4 |a neuromorphic computing 
700 1 |a Graves, Catherine E  |e verfasserin  |4 aut 
700 1 |a Li, Can  |e verfasserin  |4 aut 
700 1 |a Li, Yunning  |e verfasserin  |4 aut 
700 1 |a Ge, Ning  |e verfasserin  |4 aut 
700 1 |a Montgomery, Eric  |e verfasserin  |4 aut 
700 1 |a Davila, Noraica  |e verfasserin  |4 aut 
700 1 |a Jiang, Hao  |e verfasserin  |4 aut 
700 1 |a Williams, R Stanley  |e verfasserin  |4 aut 
700 1 |a Yang, J Joshua  |e verfasserin  |4 aut 
700 1 |a Xia, Qiangfei  |e verfasserin  |4 aut 
700 1 |a Strachan, John Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 9 vom: 15. März  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:9  |g day:15  |g month:03 
856 4 0 |u http://dx.doi.org/10.1002/adma.201705914  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 9  |b 15  |c 03