Ultrahigh Rate and Long-Life Sodium-Ion Batteries Enabled by Engineered Surface and Near-Surface Reactions

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 7 vom: 09. Feb.
1. Verfasser: Zhao, Changtai (VerfasserIn)
Weitere Verfasser: Yu, Chang, Qiu, Bo, Zhou, Si, Zhang, Mengdi, Huang, Huawei, Wang, Biqiong, Zhao, Jijun, Sun, Xueliang, Qiu, Jieshan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MoS2 graphene high rate capability sodium ion batteries surface reactions
LEADER 01000naa a22002652 4500
001 NLM279787138
003 DE-627
005 20231225023823.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201702486  |2 doi 
028 5 2 |a pubmed24n0932.xml 
035 |a (DE-627)NLM279787138 
035 |a (NLM)29315843 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Changtai  |e verfasserin  |4 aut 
245 1 0 |a Ultrahigh Rate and Long-Life Sodium-Ion Batteries Enabled by Engineered Surface and Near-Surface Reactions 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a To achieve the high-power sodium-ion batteries, the solid-state ion diffusion in the electrode materials is a highly concerned issue and needs to be solved. In this study, a simple and effective strategy is reported to weaken and degrade this process by engineering the intensified surface and near-surface reactions, which is realized by making use of a sandwich-type nanoarchitecture composed of graphene as electron channels and few-layered MoS2 with expanded interlayer spacing. The unique 2D sheet-shaped hierarchical structure is capable of shortening the ion diffusion length, while the few-layered MoS2 with expanded interlayer spacing has more accessible surface area and the decreased ion diffusion resistance, evidenced by the smaller energy barriers revealed by the density functional theory calculations. Benefiting from the shortened ion diffusion distance and enhanced electron transfer capability, a high ratio of surface or near-surface reactions is dominated at a high discharge/charge rate. As such, the composites exhibit the high capacities of 152 and 93 mA h g-1 at 30 and 50 A g-1 , respectively. Moreover, a high reversible capacity of 684 mA h g-1 and an excellent cycling stability up to 4500 cycles can be delivered. The outstanding performance is attributed to the engineered structure with increased contribution of surface or near-surface reactions 
650 4 |a Journal Article 
650 4 |a MoS2 
650 4 |a graphene 
650 4 |a high rate capability 
650 4 |a sodium ion batteries 
650 4 |a surface reactions 
700 1 |a Yu, Chang  |e verfasserin  |4 aut 
700 1 |a Qiu, Bo  |e verfasserin  |4 aut 
700 1 |a Zhou, Si  |e verfasserin  |4 aut 
700 1 |a Zhang, Mengdi  |e verfasserin  |4 aut 
700 1 |a Huang, Huawei  |e verfasserin  |4 aut 
700 1 |a Wang, Biqiong  |e verfasserin  |4 aut 
700 1 |a Zhao, Jijun  |e verfasserin  |4 aut 
700 1 |a Sun, Xueliang  |e verfasserin  |4 aut 
700 1 |a Qiu, Jieshan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 7 vom: 09. Feb.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:7  |g day:09  |g month:02 
856 4 0 |u http://dx.doi.org/10.1002/adma.201702486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 7  |b 09  |c 02