Spin density accuracy and distribution in azido Cu(II) complexes : A source function analysis

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 10 vom: 15. Apr., Seite 587-603
1. Verfasser: Macetti, Giovanni (VerfasserIn)
Weitere Verfasser: Lo Presti, Leonardo, Gatti, Carlo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article azido Cu dinuclear complexes source function spin density spin density accuracy spin information transmission
LEADER 01000naa a22002652 4500
001 NLM279785380
003 DE-627
005 20231225023820.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25150  |2 doi 
028 5 2 |a pubmed24n0932.xml 
035 |a (DE-627)NLM279785380 
035 |a (NLM)29315668 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Macetti, Giovanni  |e verfasserin  |4 aut 
245 1 0 |a Spin density accuracy and distribution in azido Cu(II) complexes  |b A source function analysis 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a Magnetic properties of open-shell systems depend on their unpaired electron density distribution. Accurate spin density (SD) is difficult to retrieve, both from polarized neutron diffraction (PND) data and from quantum approaches, and its interpretation is not trivial. The Source Function is a useful tool to interpret SD distributions and their accuracy. It is here applied to analyze and compare the theoretical SD in a weakly ferromagnetically coupled end-end azido dicopper complex with that in a strongly-coupled end-on complex. The Source Function enables to highlight the origin of the SD differences between the two dicopper complexes and among adopted computational approaches (CASSCF, DFT, UHF). Further insight is provided by partial Source Function SD reconstructions using given subsets of atoms. DFT methods exaggerate electron sharing between copper and the ligands, causing spin delocalization toward them and overestimating metal-ligand spin polarization, while underestimating CASSCF spin information transmission between atoms. CAS(10,10) SD is closer to the PND SD than other adopted methods © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a azido Cu dinuclear complexes 
650 4 |a source function 
650 4 |a spin density 
650 4 |a spin density accuracy 
650 4 |a spin information transmission 
700 1 |a Lo Presti, Leonardo  |e verfasserin  |4 aut 
700 1 |a Gatti, Carlo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 10 vom: 15. Apr., Seite 587-603  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:10  |g day:15  |g month:04  |g pages:587-603 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 10  |b 15  |c 04  |h 587-603