Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 6 vom: 26. Feb.
1. Verfasser: Nayak, Alpana (VerfasserIn)
Weitere Verfasser: Unayama, Satomi, Tai, Seishiro, Tsuruoka, Tohru, Waser, Rainer, Aono, Masakazu, Valov, Ilia, Hasegawa, Tsuyoshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article atomic switches nanoscale electrochemistry scanning tunneling microscopy solid state nanoionics
LEADER 01000naa a22002652 4500
001 NLM279772408
003 DE-627
005 20231225023802.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201703261  |2 doi 
028 5 2 |a pubmed24n0932.xml 
035 |a (DE-627)NLM279772408 
035 |a (NLM)29314325 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nayak, Alpana  |e verfasserin  |4 aut 
245 1 0 |a Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag2+δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer 
650 4 |a Journal Article 
650 4 |a atomic switches 
650 4 |a nanoscale electrochemistry 
650 4 |a scanning tunneling microscopy 
650 4 |a solid state nanoionics 
700 1 |a Unayama, Satomi  |e verfasserin  |4 aut 
700 1 |a Tai, Seishiro  |e verfasserin  |4 aut 
700 1 |a Tsuruoka, Tohru  |e verfasserin  |4 aut 
700 1 |a Waser, Rainer  |e verfasserin  |4 aut 
700 1 |a Aono, Masakazu  |e verfasserin  |4 aut 
700 1 |a Valov, Ilia  |e verfasserin  |4 aut 
700 1 |a Hasegawa, Tsuyoshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 6 vom: 26. Feb.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:6  |g day:26  |g month:02 
856 4 0 |u http://dx.doi.org/10.1002/adma.201703261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 6  |b 26  |c 02