Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 6 vom: 15. Feb.
1. Verfasser: Ni, Jiangfeng (VerfasserIn)
Weitere Verfasser: Fu, Shidong, Yuan, Yifei, Ma, Lu, Jiang, Yu, Li, Liang, Lu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article sodium storage sodium-ion batteries surface functionalization titanium dioxide
LEADER 01000caa a22002652 4500
001 NLM279771835
003 DE-627
005 20250222214714.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201704337  |2 doi 
028 5 2 |a pubmed25n0932.xml 
035 |a (DE-627)NLM279771835 
035 |a (NLM)29314265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ni, Jiangfeng  |e verfasserin  |4 aut 
245 1 0 |a Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Sodium-ion batteries (SIBs) offer a promise of a scalable, low-cost, and environmentally benign means of renewable energy storage. However, the low capacity and poor rate capability of anode materials present an unavoidable challenge. In this work, it is demonstrated that surface phosphorylated TiO2 nanotube arrays grown on Ti substrate can be efficient anode materials for SIBs. Fabrication of the phosphorylated nanoarray film is based on the electrochemical anodization of Ti metal in NH4 F solution and subsequent phosphorylation using sodium hypophosphite. The phosphorylated TiO2 nanotube arrays afford a reversible capacity of 334 mA h g-1 at 67 mA g-1 , a superior rate capability of 147 mA h g-1 at 3350 mA g-1 , and a stable cycle performance up to 1000 cycles. In situ X-ray diffraction and transmission electron microscopy reveal the near-zero strain response and robust mechanical behavior of the TiO2 host upon (de)sodiation, suggesting its excellent structural stability in the Na+ storage application 
650 4 |a Journal Article 
650 4 |a sodium storage 
650 4 |a sodium-ion batteries 
650 4 |a surface functionalization 
650 4 |a titanium dioxide 
700 1 |a Fu, Shidong  |e verfasserin  |4 aut 
700 1 |a Yuan, Yifei  |e verfasserin  |4 aut 
700 1 |a Ma, Lu  |e verfasserin  |4 aut 
700 1 |a Jiang, Yu  |e verfasserin  |4 aut 
700 1 |a Li, Liang  |e verfasserin  |4 aut 
700 1 |a Lu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 6 vom: 15. Feb.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:6  |g day:15  |g month:02 
856 4 0 |u http://dx.doi.org/10.1002/adma.201704337  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 6  |b 15  |c 02