|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM279607806 |
003 |
DE-627 |
005 |
20250222210953.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.14971
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0931.xml
|
035 |
|
|
|a (DE-627)NLM279607806
|
035 |
|
|
|a (NLM)29297591
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Op De Beeck, Michiel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.09.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
|
520 |
|
|
|a Boreal trees rely on their ectomycorrhizal fungal symbionts to acquire growth-limiting nutrients, such as nitrogen (N), which mainly occurs as proteins complexed in soil organic matter (SOM). The mechanisms for liberating this N are unclear as ectomycorrhizal fungi have lost many genes encoding lignocellulose-degrading enzymes present in their saprotrophic ancestors. We hypothesized that hydroxyl radicals (˙ OH), produced by the ectomycorrhizal fungus Paxillus involutus during growth on SOM, are involved in liberating organic N. Paxillus involutus was grown for 7 d on N-containing or N-free substrates that represent major organic compounds of SOM. ˙ OH production, ammonium assimilation, and proteolytic activity were measured daily. ˙ OH production was strongly induced when P. involutus switched from ammonium to protein as the main N source. Extracellular proteolytic activity was initiated shortly after the oxidation. Oxidized protein substrates induced higher proteolytic activity than unmodified proteins. Dynamic modeling predicted that ˙ OH production occurs in a burst, regulated mainly by ammonium and ferric iron concentrations. We propose that the production of ˙ OH and extracellular proteolytic enzymes are regulated by similar nutritional signals. Oxidation works in concert with proteolysis, improving N liberation from proteins in SOM. Organic N mining by ectomycorrhizal fungi has, until now, only been attributed to proteolysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Paxillus involutus
|
650 |
|
4 |
|a Fenton reaction
|
650 |
|
4 |
|a nitrogen (N)
|
650 |
|
4 |
|a proteolysis
|
650 |
|
4 |
|a soil organic matter (SOM)
|
650 |
|
7 |
|a Fenton's reagent
|2 NLM
|
650 |
|
7 |
|a Fungal Proteins
|2 NLM
|
650 |
|
7 |
|a Organic Chemicals
|2 NLM
|
650 |
|
7 |
|a Aspartic Acid
|2 NLM
|
650 |
|
7 |
|a 30KYC7MIAI
|2 NLM
|
650 |
|
7 |
|a Hydroxyl Radical
|2 NLM
|
650 |
|
7 |
|a 3352-57-6
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
650 |
|
7 |
|a Iron
|2 NLM
|
650 |
|
7 |
|a E1UOL152H7
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Troein, Carl
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peterson, Carsten
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Persson, Per
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tunlid, Anders
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1989
|g 218(2018), 1 vom: 15. Apr., Seite 335-343
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:218
|g year:2018
|g number:1
|g day:15
|g month:04
|g pages:335-343
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.14971
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 218
|j 2018
|e 1
|b 15
|c 04
|h 335-343
|