Combined Effect of the Microstructure and Underlying Surface Curvature on the Performance of Biomimetic Adhesives
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 19 vom: 26. Mai, Seite e1704696 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article adhesion biomimetics microstructure polymers |
Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The importance of the geometry of the micro-/nanosized attachment elements for adhesive characteristics of gecko-inspired microstructured surfaces has been comprehensively discussed in recent years. Due to the complex hierarchical structure of these systems, they possess a broad range of adhesion control capabilities by either passive or active adaptability of their underlying structures to the specific substrate and/or behavioral situation. Here, the influence of macroscopic geometry of backing layers hosting biomimetic microstructured surfaces is examined. The flat, convex, and concave macroscopic configurations of the bioinspired microstructured adhesive surfaces are examined on their adhesive performance under varying degrees of curvature and preloads. Microstructured surfaces demonstrated an adhesion range differing by up to a factor of 2 alone through varying backing layer configuration. The results can aid in understanding the influence of curvature geometry on hierarchically structured adhesive systems and the implementation of biomimetic structured surfaces in applications such as robots and grippers optimized for different sized objects |
---|---|
Beschreibung: | Date Completed 30.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201704696 |