Imperceptible Epidermal-Iontronic Interface for Wearable Sensing

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 6 vom: 07. Feb.
1. Verfasser: Zhu, Zijie (VerfasserIn)
Weitere Verfasser: Li, Ruya, Pan, Tingrui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article epidermal electronics epidermal-iontronic interfaces iontronic sensing pressure sensing
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent development of epidermal electronics provides an enabling means to continuous monitoring of physiological signals and close tracking of physical activities without affecting quality of life. Such devices require high sensitivity for low-magnitude signal detection, noise reduction for motion artifacts, imperceptible wearability with long-term comfortableness, and low-cost production for scalable manufacturing. However, the existing epidermal pressure sensing devices, usually involving complex multilayer structures, have not fully addressed the aforementioned challenges. Here, the first epidermal-iontronic interface (EII) is successfully introduced incorporating both single-sided iontronic devices and the skin itself as the pressure sensing architectures, allowing an ultrathin, flexible, and imperceptible packaging with conformal epidermal contact. Notably, utilizing skin as part of the EII sensor, high pressure sensitivity and high signal-to-noise ratios are achieved, along with ultralow motion artifacts for both internal (body) and external (environmental) mechanical stimuli. Monitoring of various vital signals, such as blood pressure waveforms, respiration waveforms, muscle activities and artificial tactile sensation, is successfully demonstrated, implicating a broad applicability of the EII devices for emerging wearable applications
Beschreibung:Date Completed 06.03.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201705122