Development of non-bonded interaction parameters between graphene and water using particle swarm optimization

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 12 vom: 05. Mai, Seite 721-734
1. Verfasser: Bejagam, Karteek K (VerfasserIn)
Weitere Verfasser: Singh, Samrendra, Deshmukh, Sanket A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article contact angle graphene-water nonbonded interactions hydrogen bond molecular dynamics particle swarm optimization vibrational spectra water clusters
LEADER 01000naa a22002652 4500
001 NLM279302096
003 DE-627
005 20231225022642.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25141  |2 doi 
028 5 2 |a pubmed24n0931.xml 
035 |a (DE-627)NLM279302096 
035 |a (NLM)29266458 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bejagam, Karteek K  |e verfasserin  |4 aut 
245 1 0 |a Development of non-bonded interaction parameters between graphene and water using particle swarm optimization 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10-11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a contact angle 
650 4 |a graphene-water nonbonded interactions 
650 4 |a hydrogen bond 
650 4 |a molecular dynamics 
650 4 |a particle swarm optimization 
650 4 |a vibrational spectra 
650 4 |a water clusters 
700 1 |a Singh, Samrendra  |e verfasserin  |4 aut 
700 1 |a Deshmukh, Sanket A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 12 vom: 05. Mai, Seite 721-734  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:12  |g day:05  |g month:05  |g pages:721-734 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 12  |b 05  |c 05  |h 721-734