Integrated Experimental and Modeling Study of Enzymatic Degradation Using Novel Autofluorescent BSA Microspheres

Autofluorescent bovine serum albumin (BSA) hydrogel microspheres were prepared through the spray-drying of glutaraldehyde cross-linked BSA nanoparticles and then used for a proteinase K based degradation study in an aqueous solution. Experimental results and empirical models are presented to charact...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 1 vom: 09. Jan., Seite 191-197
1. Verfasser: Ma, Xiaoyu (VerfasserIn)
Weitere Verfasser: Li, Ji-Qin, O'Connell, Christopher, Fan, Tai-Hsi, Lei, Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fluorescent Dyes Hydrogels Serum Albumin, Bovine 27432CM55Q Endopeptidase K EC 3.4.21.64 Glutaral T3C89M417N
Beschreibung
Zusammenfassung:Autofluorescent bovine serum albumin (BSA) hydrogel microspheres were prepared through the spray-drying of glutaraldehyde cross-linked BSA nanoparticles and then used for a proteinase K based degradation study in an aqueous solution. Experimental results and empirical models are presented to characterize the kinetics of BSA hydrogel microsphere degradation, as well as the accompanying release of synthesized fluorophore. The BSA gel degradation dynamics is primarily controlled by the concentration of proteinase K within the Tris buffer. The coupling of swelling dynamics and the transient distributions of fluorophore are traced by confocal microscopy. Models are developed based on the linear theory of elastic deformation coupled to enzyme and fluorophore transport. This study represents a fundamental investigation of the degradation and release kinetics of protein-based materials, which can potentially be applied for the dynamic and photostable tracking of relevant in vivo systems
Beschreibung:Date Completed 11.09.2018
Date Revised 11.09.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b03057