|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM279136137 |
003 |
DE-627 |
005 |
20231225022250.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.7b03633
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0930.xml
|
035 |
|
|
|a (DE-627)NLM279136137
|
035 |
|
|
|a (NLM)29249161
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lv, Guojun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Surface-Active Hollow Titanosilicate Particles as a Pickering Interfacial Catalyst for Liquid-Phase Alkene Epoxidation Reactions
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.04.2018
|
500 |
|
|
|a Date Revised 11.04.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The design of catalyst particles bearing excellent catalytic activity and suitable surface wettability is the key to successful application of Pickering interfacial catalysis. In this study, the epoxidation of 1-hexene and cyclohexene with aqueous hydrogen peroxide over hollow TS-1 (HTS-1) zeolite was studied as a probe reaction to investigate the influence of catalyst surface wettability on catalytic activity. Hydrophobized HTS-1 particles were fabricated via a postsynthesis desilication treatment with tetrapropylammonium hydroxide and a postsynthesis silylation treatment with hexamethyldisiloxane (HMDSO). The successful preparation of HTS-1 particles was verified by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. X-ray diffraction patterns and ultraviolet-visible spectra confirmed that the hydrophobic modification had no effect on the zeolite structure of HTS-1 particles. Stable Pickering emulsions of aqueous hydrogen peroxide in either 1-hexene or cyclohexene could be prepared using HTS-1 particles as emulsifiers and confirmed by cryo-SEM images. The catalytic behavior in the obtained Pickering emulsions revealed a parabolic distribution of turnover frequency values with respect to the hydrophobization degrees with 0.2-HMDSO/HTS-1 particles possessing the maximum values of 20.6 h-1 for 1-hexene epoxidation and 8.1 h-1 for cyclohexene epoxidation. In addition, these 0.2-HMDSO/HTS-1 particles showed good reusability for more than five cycles
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Wang, Fumin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xubin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Binks, Bernard P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 34(2018), 1 vom: 09. Jan., Seite 302-310
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2018
|g number:1
|g day:09
|g month:01
|g pages:302-310
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.7b03633
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2018
|e 1
|b 09
|c 01
|h 302-310
|