|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM278757197 |
003 |
DE-627 |
005 |
20250222175005.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201704851
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0929.xml
|
035 |
|
|
|a (DE-627)NLM278757197
|
035 |
|
|
|a (NLM)29210479
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Heguang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Origin of Fracture-Resistance to Large Volume Change in Cu-Substituted Co3 O4 Electrodes
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The electrode materials conducive to conversion reactions undergo large volume change in cycles which restrict their further development. It has been demonstrated that incorporation of a third element into metal oxides can improve the cycling stability while the mechanism remains unknown. Here, an in situ and ex situ electron microscopy investigation of structural evolutions of Cu-substituted Co3 O4 supplemented by first-principles calculations is reported to reveal the mechanism. An interconnected framework of ultrathin metallic copper formed provides a high conductivity backbone and cohesive support to accommodate the volume change and has a cube-on-cube orientation relationship with Li2 O. In charge, a portion of Cu metal is oxidized to CuO, which maintains a cube-on-cube orientation relationship with Cu. The Co metal and oxides remain as nanoclusters (less than 5 nm) thus active in subsequent cycles. This adaptive architecture accommodates the formation of Li2 O in the discharge cycle and underpins the catalytic activity of Li2 O decomposition in the charge cycle
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Cu-doping transition metal oxides
|
650 |
|
4 |
|a cycling stability
|
650 |
|
4 |
|a in situ transmission electron microscopy (TEM)
|
650 |
|
4 |
|a lithium-ion batteries
|
700 |
1 |
|
|a Li, Qianqian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Zhenpeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wolverton, Chris
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hersam, Mark C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jinsong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dravid, Vinayak P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 4 vom: 26. Jan.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:4
|g day:26
|g month:01
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201704851
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 4
|b 26
|c 01
|