|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM278708765 |
003 |
DE-627 |
005 |
20250222173918.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201704353
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0928.xml
|
035 |
|
|
|a (DE-627)NLM278708765
|
035 |
|
|
|a (NLM)29205533
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zheng, Xinyao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synergism of Rare Earth Trihydrides and Graphite in Lithium Storage
|b Evidence of Hydrogen-Enhanced Lithiation
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The lithium storage capacity of graphite can be significantly promoted by rare earth trihydrides (REH3 , RE = Y, La, and Gd) through a synergetic mechanism. High reversible capacity of 720 mA h g-1 after 250 cycles is achieved in YH3 -graphite nanocomposite, far exceeding the total contribution from the individual components and the effect of ball milling. Comparative study on LaH3 -graphite and GdH3 -graphite composites suggests that the enhancement factor is 3.1-3.4 Li per active H in REH3 , almost independent of the RE metal, which is evident of a hydrogen-enhanced lithium storage mechanism. Theoretical calculation suggests that the active H from REH3 can enhance the Li+ binding to the graphene layer by introducing negatively charged sites, leading to energetically favorable lithiation up to a composition Li5 C16 H instead of LiC6 for conventional graphite anode
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anodes
|
650 |
|
4 |
|a graphite
|
650 |
|
4 |
|a hydride
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a rare earths
|
700 |
1 |
|
|a Yang, Chengkai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Xinghua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Teng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Henghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xingguo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 3 vom: 26. Jan.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:3
|g day:26
|g month:01
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201704353
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 3
|b 26
|c 01
|