Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases

© 2017 Commonwealth of Australia. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 219(2018), 1 vom: 01. Juli, Seite 45-51
1. Verfasser: Periyannan, Sambasivam (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review crop disease gene cloning genetic resistance marker sequencing transgene Plant Proteins
LEADER 01000naa a22002652 4500
001 NLM27870736X
003 DE-627
005 20231225021238.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.14928  |2 doi 
028 5 2 |a pubmed24n0929.xml 
035 |a (DE-627)NLM27870736X 
035 |a (NLM)29205390 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Periyannan, Sambasivam  |e verfasserin  |4 aut 
245 1 0 |a Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.10.2019 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 Commonwealth of Australia. New Phytologist © 2017 New Phytologist Trust. 
520 |a Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become available through advances in sequencing, gene capture and strategies for reducing genome complexity. Here, I describe these approaches with key emphasis on the isolation of resistance genes to the cereal crop diseases that are an ongoing threat to global food security. Rapid gene isolation enables their efficient deployment through marker-assisted selection and transgenic technology. Together with innovations in genome editing and progress in pathogen virulence studies, this creates further opportunities to engineer long-lasting resistance. These approaches will speed progress towards a future of farming using fewer pesticides 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 4 |a crop disease 
650 4 |a gene cloning 
650 4 |a genetic resistance 
650 4 |a marker 
650 4 |a sequencing 
650 4 |a transgene 
650 7 |a Plant Proteins  |2 NLM 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 219(2018), 1 vom: 01. Juli, Seite 45-51  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:219  |g year:2018  |g number:1  |g day:01  |g month:07  |g pages:45-51 
856 4 0 |u http://dx.doi.org/10.1111/nph.14928  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 219  |j 2018  |e 1  |b 01  |c 07  |h 45-51