Tuning Nanoparticle-Micelle Interactions and Resultant Phase Behavior

The evolution of the interaction between an anionic nanoparticle and a nonionic surfactant and their resultant phase behavior in aqueous solution in the presence of electrolyte and ionic surfactants have been studied. The mixed system of anionic silica nanoparticles (Ludox LS30) with nonionic surfac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 1 vom: 09. Jan., Seite 259-267
1. Verfasser: Ray, Debes (VerfasserIn)
Weitere Verfasser: Kumar, Sugam, Aswal, Vinod Kumar, Kohlbrecher, Joachim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM278676103
003 DE-627
005 20231225021149.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.7b03429  |2 doi 
028 5 2 |a pubmed24n0928.xml 
035 |a (DE-627)NLM278676103 
035 |a (NLM)29202235 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ray, Debes  |e verfasserin  |4 aut 
245 1 0 |a Tuning Nanoparticle-Micelle Interactions and Resultant Phase Behavior 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.04.2018 
500 |a Date Revised 11.04.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The evolution of the interaction between an anionic nanoparticle and a nonionic surfactant and their resultant phase behavior in aqueous solution in the presence of electrolyte and ionic surfactants have been studied. The mixed system of anionic silica nanoparticles (Ludox LS30) with nonionic surfactant decaethylene glycol monododecylether (C12E10) forms a highly stable clear phase over a wide concentration range of surfactant. Small-angle neutron scattering (SANS) and dynamic light scattering data show that the surfactant micelles adsorb on the surface of the nanoparticle, resulting in micellar-decorated nanoparticle structures. With the addition of a small amount of electrolyte into this system, the stability gets disturbed substantially and turns to a two-phase (turbid) system. The evolution of interaction in this system has been examined, and it was found that micelle-induced long-range depletion attraction (modeled by a double Yukawa potential) between nanoparticles leads to their aggregation. Interestingly, the addition of anionic surfactant sodium dodecyl sulfate (SDS) in this two-phase system transforms it to a transparent one-phase state, suppressing the depletion-mediated aggregation of nanoparticles. This is attributed to the formation of anionic C12E10-SDS mixed micelles, and it is their repulsive micelle-micelle interaction that disrupts the depletion phenomenon. On the other hand, the addition of cationic surfactant dodecyl trimethylammonium bromide (DTAB) to the turbid LS30-C12E10 electrolyte system shows no change in the turbidity arising from an aggregated nanoparticle system. The driving interaction, in this case, is different from that of the surfactant-mediated depletion attraction; it is due to the attraction between the nanoparticles mediated by the presence of oppositely charged DTAB micelles between them, resulting in a charge-driven bridging aggregation of nanoparticles. Each of these multicomponent systems has been investigated using contrast variation SANS measurements for different contrast conditions where the role of individual components (nanoparticle or surfactant) in the mixed system has been selectively studied. These results thus show that nanoparticle-surfactant micelle interactions can be tuned by the presence of electrolyte and/or choice of surfactant combination 
650 4 |a Journal Article 
700 1 |a Kumar, Sugam  |e verfasserin  |4 aut 
700 1 |a Aswal, Vinod Kumar  |e verfasserin  |4 aut 
700 1 |a Kohlbrecher, Joachim  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 34(2018), 1 vom: 09. Jan., Seite 259-267  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:34  |g year:2018  |g number:1  |g day:09  |g month:01  |g pages:259-267 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.7b03429  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 34  |j 2018  |e 1  |b 09  |c 01  |h 259-267