Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 2 vom: 06. Jan.
1. Verfasser: Li, Jinxing (VerfasserIn)
Weitere Verfasser: Angsantikul, Pavimol, Liu, Wenjuan, Esteban-Fernández de Ávila, Berta, Chang, Xiaocong, Sandraz, Elodie, Liang, Yuyan, Zhu, Siyu, Zhang, Yue, Chen, Chuanrui, Gao, Weiwei, Zhang, Liangfang, Wang, Joseph
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biofouling biothreat nanomedicine nanorobots platelet membranes
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One emerging and exciting topic in robotics research is the design of micro-/nanoscale robots for biomedical operations. Unlike industrial robots that are developed primarily to automate routine and dangerous tasks, biomedical nanorobots are designed for complex, physiologically relevant environments, and tasks that involve unanticipated biological events. Here, a biologically interfaced nanorobot is reported, made of magnetic helical nanomotors cloaked with the plasma membrane of human platelets. The resulting biomimetic nanorobots possess a biological membrane coating consisting of diverse functional proteins associated with human platelets. Compared to uncoated nanomotors which experience severe biofouling effects and hence hindered propulsion in whole blood, the platelet-membrane-cloaked nanomotors disguise as human platelets and display efficient propulsion in blood over long time periods. The biointerfaced nanorobots display platelet-mimicking properties, including adhesion and binding to toxins and platelet-adhering pathogens, such as Shiga toxin and Staphylococcus aureus bacteria. The locomotion capacity and platelet-mimicking biological function of the biomimetic nanomotors offer efficient binding and isolation of these biological threats. The dynamic biointerfacing platform enabled by platelet-membrane cloaked nanorobots thus holds considerable promise for diverse biomedical and biodefense applications
Beschreibung:Date Completed 26.02.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201704800