|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM278378323 |
003 |
DE-627 |
005 |
20231225020432.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201703646
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0927.xml
|
035 |
|
|
|a (DE-627)NLM278378323
|
035 |
|
|
|a (NLM)29171919
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lin, Chun-Yu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Covalent Organic Framework Electrocatalysts for Clean Energy Conversion
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a covalent organic frameworks
|
650 |
|
4 |
|a electrocatalysts
|
650 |
|
4 |
|a energy conversion
|
650 |
|
4 |
|a energy storage
|
700 |
1 |
|
|a Zhang, Detao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Zhenghang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Zhenhai
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 5 vom: 08. Feb.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:5
|g day:08
|g month:02
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201703646
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 5
|b 08
|c 02
|