Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall

Copyright © 2017 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 220(2018) vom: 05. Jan., Seite 34-42
1. Verfasser: Drzewiecka, Kinga (VerfasserIn)
Weitere Verfasser: Gąsecka, Monika, Rutkowski, Paweł, Magdziak, Zuzanna, Goliński, Piotr, Mleczek, Mirosław
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Arsenic Dimethylarsinic acid Phenolics Salicylic acid Ulmus laevis Arsenicals Flavonoids Phenols Salicylic Acid O414PZ4LPZ
Beschreibung
Zusammenfassung:Copyright © 2017 Elsevier GmbH. All rights reserved.
Total phenolics and the profile of phenolic acids and flavonoids were investigated in the roots and leaves of Ulmus laevis cultured on the medium with inorganic and organic arsenic - As(III), As(V) and DMA(V) at 0.06mM and their equimolar combinations. Further, the accumulation of salicylic acid (free and glucoside-bound) and lipid oxidation were assayed following a three-month long experiment. As treatment caused elevated production of phenolics, which was higher in photosynthetic tissue than in roots for all As forms and their combinations, and their overall content was correlated with the accumulation of organic As in roots and As(III) in leaves. The accumulation of organic As strongly induced shikimate-derived protocatechiuc acid in roots. Contrary to this, shikimate-derived phenolics (protocatechuic, gallic acids and 4-HBA) were suppressed in leaves, while the accumulation of C6C3 acids (caffeic, p-coumaric and chlorogenic) was stimulated by As(V) application. Surprisingly, these acids were not detected in the leaves of As(III)-treated plants, and mutually applied As(III) and DMA(V) reduced their content. DMA(V) negatively influenced the level of salicylic acid and its storage mechanism and this effect correlated with elevated MDA content in leaves. Quercetin accumulation was observed in both organs (mainly leaves) of DMA(V)-treated plants thereby proving its function in defensive response of Ulmus laevis to organic forms of As
Beschreibung:Date Completed 06.07.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2017.09.013