|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM278058183 |
003 |
DE-627 |
005 |
20231225015706.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.7b02403
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0926.xml
|
035 |
|
|
|a (DE-627)NLM278058183
|
035 |
|
|
|a (NLM)29139299
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mao, Chengyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 01.08.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Developing photoanodes with efficient visible-light harvesting and excellent charge separation still remains a key challenge in photoelectrochemical water splitting. Here zeolite-type chalcogenide CPM-121 is integrated with TiO2 nanowires to form a heterostructured photoanode, in which crystalline CPM-121 particles serve as a visible light absorber and TiO2 nanowires serve as an electron conductor. Owing to the small band gap of chalcogenides, the hybrid electrode demonstrates obvious absorption in visible-light range. Electrochemical impedance spectroscopy (EIS) shows that electron transport in the hybrid electrode has been significantly facilitated due to the heterojunction formation. A >3-fold increase in photocurrent is observed on the hybrid electrode under visible-light illumination when it is used as a photoanode in a neutral electrolyte without sacrificial agents. This study opens up a new avenue to explore the potential applications of crystalline porous chalcogenide materials for solar-energy conversion in photoelectrochemistry
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Wang, Yanxiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xitong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Qipu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Mingli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ling, Yun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Yaming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bu, Xianhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Pingyun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 33(2017), 47 vom: 28. Nov., Seite 13634-13639
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2017
|g number:47
|g day:28
|g month:11
|g pages:13634-13639
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.7b02403
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2017
|e 47
|b 28
|c 11
|h 13634-13639
|