Investigations to extend viability of a rainbow trout primary gill cell culture

The primary culture of fish gill cells can provide functional, cell diverse, model in vitro platforms able to tolerate an aqueous exposure analogous to in vivo tissues. The utility of such models could be extended to a variety of longer term exposure scenarios if a method could be established to ext...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 26(2017), 10 vom: 10. Dez., Seite 1314-1326
1. Verfasser: Maunder, Richard J (VerfasserIn)
Weitere Verfasser: Baron, Matthew G, Owen, Stewart F, Jha, Awadhesh N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Chronic exposure Ecotoxicology Environmental risk assessment Fish gill In vitro Oncorhynchus mykiss
Beschreibung
Zusammenfassung:The primary culture of fish gill cells can provide functional, cell diverse, model in vitro platforms able to tolerate an aqueous exposure analogous to in vivo tissues. The utility of such models could be extended to a variety of longer term exposure scenarios if a method could be established to extend culture viability when exposed to water for longer periods. Here we report findings of a series of experiments to establish increased longevity, as monitored by culture transepithelial electrical resistance (TEER) and concurrent histological developments. Experimental cultures improved TEER during apical freshwater exposure for a mean of twelve days, compared to previous viabilities of up to 3 days. Cultures with larger surface areas and the use of trout serum rather than foetal bovine serum (FBS) contributed to the improvement, while perfusion of the intact gill prior to cell harvest resulted in a significantly faster preparation. Detailed scanning electron microscopy analysis of cultures revealed diverse surface structures that changed with culture age. Cultures grown on membranes with an increased porosity, collagen coating or 3D structure were of no benefit compared to standard membranes. Increased culture longevity, achieved in this study and reported for the first time, is a significant breakthrough and opens up a variety of future experimentation that has previously not been possible. The extended viability facilitates exploration of in vitro chronic or pulse-exposure test paradigms, longer term physiological and environmental monitoring studies and the potential for interactive co-culture with other organoid micro-tissues
Beschreibung:Date Completed 07.12.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-017-1856-6