Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 47 vom: 02. Dez.
1. Verfasser: Kim, Hyun-Tak (VerfasserIn)
Weitere Verfasser: Shin, HyeonOh, Jeon, In-Yup, Yousaf, Masood, Baik, Jaeyoon, Cheong, Hae-Won, Park, Noejung, Baek, Jong-Beom, Kwon, Tae-Hyuk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon nanomaterials carbon-heteroatom bonds energy storage systems ultrasonic chemistry
LEADER 01000naa a22002652 4500
001 NLM277865220
003 DE-627
005 20231225015259.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201702747  |2 doi 
028 5 2 |a pubmed24n0926.xml 
035 |a (DE-627)NLM277865220 
035 |a (NLM)29119629 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Hyun-Tak  |e verfasserin  |4 aut 
245 1 0 |a Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N2 or O2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g-1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm-2 and 621 F g-1 at 10 mV s-1 for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility 
650 4 |a Journal Article 
650 4 |a carbon nanomaterials 
650 4 |a carbon-heteroatom bonds 
650 4 |a energy storage systems 
650 4 |a ultrasonic chemistry 
700 1 |a Shin, HyeonOh  |e verfasserin  |4 aut 
700 1 |a Jeon, In-Yup  |e verfasserin  |4 aut 
700 1 |a Yousaf, Masood  |e verfasserin  |4 aut 
700 1 |a Baik, Jaeyoon  |e verfasserin  |4 aut 
700 1 |a Cheong, Hae-Won  |e verfasserin  |4 aut 
700 1 |a Park, Noejung  |e verfasserin  |4 aut 
700 1 |a Baek, Jong-Beom  |e verfasserin  |4 aut 
700 1 |a Kwon, Tae-Hyuk  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 47 vom: 02. Dez.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:47  |g day:02  |g month:12 
856 4 0 |u http://dx.doi.org/10.1002/adma.201702747  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 47  |b 02  |c 12