Nuclear quantum effects induce metallization of dense solid molecular hydrogen

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 5 vom: 15. Feb., Seite 262-268
1. Verfasser: Azadi, Sam (VerfasserIn)
Weitere Verfasser: Singh, Ranber, Kühne, Thomas D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Car-Parrinello molecular dynamics metallic hydrogen nuclear quantum effects path-integral molecular dynamics quantum Monte Carlo
LEADER 01000naa a22002652 4500
001 NLM277836042
003 DE-627
005 20231225015211.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25104  |2 doi 
028 5 2 |a pubmed24n0926.xml 
035 |a (DE-627)NLM277836042 
035 |a (NLM)29116648 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Azadi, Sam  |e verfasserin  |4 aut 
245 1 0 |a Nuclear quantum effects induce metallization of dense solid molecular hydrogen 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the C2/c, Pc, and P63/m structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and temperature-induced motion of the protons including anharmonic effects. We find that finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to metallization of the C2/c and Pc phases via band overlap; the effect on the band-gap of the P63/m structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no excitonic or quasiparticle energy gaps for the C2/c and Pc phases at 300 GPa and 300 K. Our results also indicate a strong correlation between the band-gap energy and vibron modes. This strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none of the structures proposed is a good candidate for phases III and IV of solid hydrogen. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Car-Parrinello molecular dynamics 
650 4 |a metallic hydrogen 
650 4 |a nuclear quantum effects 
650 4 |a path-integral molecular dynamics 
650 4 |a quantum Monte Carlo 
700 1 |a Singh, Ranber  |e verfasserin  |4 aut 
700 1 |a Kühne, Thomas D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 5 vom: 15. Feb., Seite 262-268  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:5  |g day:15  |g month:02  |g pages:262-268 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25104  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 5  |b 15  |c 02  |h 262-268