Host-guest interactions between octa acid and cations/nucleobases
© 2017 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 39(2018), 3 vom: 30. Jan., Seite 161-175 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't energy decomposition analysis host-guest interaction noncovalent interaction octa acid cavitand selective binding |
Zusammenfassung: | © 2017 Wiley Periodicals, Inc. The nature of host-guest interaction in between octa acid cavitand (OA) and some representative cationic guests (Li+ , Na+ , K+ , Be+2 , Mg+2 , Ca+2 , Li3 O+ , Na3 O+ , K3 O+ ) as well as heterocyclic moieties like [adenine (A), guanine (G), cytosine (C), thymine (T), uracil (U), and tetrathiafulvalene (TTF)] has been examined with the aid of density functional theory (DFT)-based computations. Thermochemical results indicate that all the guests bind with OA in a thermodynamically favorable fashion at 298.15 K temperature and one atmospheric pressure. OA exhibits high selectivity in binding the lighter cations/metal cluster cations as compared to the heavier congeners along each given series. Moreover, OA exhibits enhanced affinity as well as selectivity in binding A/G/TTF molecules as compared to C/T/U. Noncovalent interaction and energy decomposition analyses reveal that in addition to the van der Waals interaction, significant contribution from electrostatic as well as orbital interactions dictate the outcome in all the host-guest complexes. Time dependent DFT calculations have been carried out to assess the role of the guests in tuning the electronic properties as well as absorption spectrum of OA. © 2017 Wiley Periodicals, Inc |
---|---|
Beschreibung: | Date Completed 09.09.2019 Date Revised 09.09.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.25097 |