A short story gets longer : recent insights into the molecular basis of heterostyly

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 68(2017), 21-22 vom: 16. Dez., Seite 5719-5730
1. Verfasser: Kappel, Christian (VerfasserIn)
Weitere Verfasser: Huu, Cuong Nguyen, Lenhard, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Review CYP734A50 GLOBOSA2 Primula S locus distyly hemizygosity heterostyly supergene tristyly
Beschreibung
Zusammenfassung:© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Heterostyly is a fascinating adaptation to promote outbreeding and a classical paradigm of botany. In the most common type of heterostyly, plants either form flowers with long styles and short stamens, or short styles and long stamens. This reciprocal organ positioning reduces pollen wastage and promotes cross-pollination, thus increasing male fitness. In addition, in many heterostylous species selfing and the generation of unfit progeny due to inbreeding depression is limited by a self-incompatibility system, thus promoting female fitness. The two floral forms are genetically determined by the S locus as a complex supergene, namely a chromosomal region containing several individual genes that control the different traits, such as style or stamen length, and are held together by very tight linkage due to suppressed recombination. Recent molecular-genetic studies in several systems, including Turnera, Fagopyrum, Linum, and Primula have begun to identify and characterize the causal heterostyly genes residing at the S locus. An emerging theme from several families is that the dominant S haplotype represents a hemizygous region not present on the recessive s haplotype. This provides an explanation for the suppressed recombination and suggests a scenario for the chromosomal evolution of the S locus. In this review, we discuss the results from recent molecular-genetic analyses in light of the classical models on the genetics and evolution of heterostyly
Beschreibung:Date Completed 07.01.2019
Date Revised 07.01.2019
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erx387