Confinement induced thermodynamic and kinetic facilitation of some Diels-Alder reactions inside a CB[7] cavitand

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 3 vom: 30. Jan., Seite 151-160
1. Verfasser: Chakraborty, Debdutta (VerfasserIn)
Weitere Verfasser: Chattaraj, Pratim Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Diels-Alder reaction confinement cucurbit[7]uril rate acceleration supramolecular chemistry
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
The effect of geometrical confinement on the Diels-Alder reactions between some model dienes viz. furan, thiophene, cyclopentadiene, benzene, and a classic dienophile, ethylene has been explored by performing density functional theory-based calculations. The effect of confinement has been imposed by a rigid macrocyclic molecule cucurbit[7]uril (CB[7]). Results indicate that all the reactions become thermodynamically more favorable at 298.15 K temperature and one atmospheric pressure inside CB[7] as compared to the corresponding free gaseous state reactions. Moreover, the rate constants associated with the reactions experience manifold enhancement inside CB[7] as compared to the "unconfined" reactions. Suitable contribution from the entropy factor makes the concerned reactions more facile inside CB[7]. The energy gap between the frontier molecular orbitals of the dienes and dienophiles decrease inside CB[7] as compared to that in the free state reactions thereby allowing facile orbital interactions. The nature of interaction as well as bonding has been analyzed with the help of atoms-in-molecules, noncovalent interaction, natural bond orbital as well as energy decomposition analyses. Results suggest that all the guests bind with CB[7] in an attractive fashion. Primarily, noncovalent interactions stabilize the host-guest systems. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.25094