CO2 and Redox Dual Responsive Pickering Emulsion

Herein, we described for the first time a CO2 and redox dual responsive paraffin oil-in-water Pickering emulsion stabilized by the modified silica nanoparticles with Se-containing tertiary amine, SeTA, in which the tertiary amine serves as a CO2-sensitive group, and the Se atom serves as a redox-sen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 45 vom: 14. Nov., Seite 12973-12981
1. Verfasser: Zhang, Yongmin (VerfasserIn)
Weitere Verfasser: Guo, Shuang, Ren, Xiaofei, Liu, Xuefeng, Fang, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Herein, we described for the first time a CO2 and redox dual responsive paraffin oil-in-water Pickering emulsion stabilized by the modified silica nanoparticles with Se-containing tertiary amine, SeTA, in which the tertiary amine serves as a CO2-sensitive group, and the Se atom serves as a redox-sensitive center. The Pickering emulsion can be reversibly switched between stable and unstable states by bubbling CO2 and N2 in the reduced state, or with the addition of H2O2 and Na2SO3 in the absence of CO2, because of the adsorption and desorption of SeTA on the silica surface. The former is mainly attributed to a CO2-controllable electrostatic attraction, resulting from the transition of molecules between cationic and nonionic states; whereas, the latter is ascribed to a redox-tunable hydrogen bonding, originating from the transition of molecules between selenide and selenoxide. However, in the presence of CO2, redox can only induce a change in the droplet size, not demulsification. These interesting and unique multiresponsive behaviors endow the Pickering emulsion with a capacity for intelligent control of emulsification and demulsification, as well as the droplet size, which may be an asset for a myriad of technological applications in biomedicine, microfluidics, drug delivery, and cosmetics
Beschreibung:Date Completed 31.07.2018
Date Revised 31.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b02976