Single determinant N-representability and the kernel energy method applied to water clusters

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 17 vom: 30. Juni, Seite 1038-1043
1. Verfasser: Polkosnik, Walter (VerfasserIn)
Weitere Verfasser: Massa, Lou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article N-representability density matrix quantum crystallography soft scaling quantum chemical methods water clusters
LEADER 01000naa a22002652 4500
001 NLM277324165
003 DE-627
005 20231225013945.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25064  |2 doi 
028 5 2 |a pubmed24n0924.xml 
035 |a (DE-627)NLM277324165 
035 |a (NLM)29064109 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Polkosnik, Walter  |e verfasserin  |4 aut 
245 1 0 |a Single determinant N-representability and the kernel energy method applied to water clusters 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a The Kernel energy method (KEM) is a quantum chemical calculation method that has been shown to provide accurate energies for large molecules. KEM performs calculations on subsets of a molecule (called kernels) and so the computational difficulty of KEM calculations scales more softly than full molecule methods. Although KEM provides accurate energies those energies are not required to satisfy the variational theorem. In this article, KEM is extended to provide a full molecule single-determinant N-representable one-body density matrix. A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined. This matrix is converted to a normalized projector by an algorithm due to Clinton. The resulting single-determinant N-representable density matrix maps to a quantum mechanically valid wavefunction which satisfies the variational theorem. The process is demonstrated on clusters of three to twenty water molecules. The resulting energies are more accurate than the straightforward KEM energy results and all violations of the variational theorem are resolved. The N-representability studied in this article is applicable to the study of quantum crystallography. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a N-representability 
650 4 |a density matrix 
650 4 |a quantum crystallography 
650 4 |a soft scaling quantum chemical methods 
650 4 |a water clusters 
700 1 |a Massa, Lou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 17 vom: 30. Juni, Seite 1038-1043  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:17  |g day:30  |g month:06  |g pages:1038-1043 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25064  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 17  |b 30  |c 06  |h 1038-1043