Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction : In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 46 vom: 14. Dez. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article in situ TEM oriented attachment oxygen reduction reaction platinum-based nanowires solid-state reaction |
Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton-exchange membrane fuel cells. Based on a generic solid-state reaction, this study reports a modified hydrogen-assisted, gas-phase synthesis for facile, scalable production of surfactant-free, thin, platinum-based nanowire-network electrocatalysts. The free-standing platinum and platinum-nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate-materials-supported platinum-based nanowires are obtained, which paves the way to practical application as a next-generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free-standing platinum nanowires form in the solid state via metal-surface-diffusion-assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas-molecular-adsorbate-modified growth in catalyst preparation |
---|---|
Beschreibung: | Date Completed 18.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201703460 |