Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 217(2018), 2 vom: 21. Jan., Seite 771-783
1. Verfasser: Kouzai, Yusuke (VerfasserIn)
Weitere Verfasser: Kimura, Mamiko, Watanabe, Megumi, Kusunoki, Kazuki, Osaka, Daiki, Suzuki, Tomoko, Matsui, Hidenori, Yamamoto, Mikihiro, Ichinose, Yuki, Toyoda, Kazuhiro, Matsuura, Takakazu, Mori, Izumi C, Hirayama, Takashi, Minami, Eiichi, Nishizawa, Yoko, Inoue, Komaki, Onda, Yoshihiko, Mochida, Keiichi, Noutoshi, Yoshiteru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Brachypodium distachyon Rhizoctonia solani biotroph disease resistance necrotroph rice salicylic acid (SA) sheath blight mehr... Plant Growth Regulators RNA, Messenger Salicylic Acid O414PZ4LPZ
LEADER 01000naa a22002652 4500
001 NLM277166403
003 DE-627
005 20231225013610.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.14849  |2 doi 
028 5 2 |a pubmed24n0923.xml 
035 |a (DE-627)NLM277166403 
035 |a (NLM)29048113 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kouzai, Yusuke  |e verfasserin  |4 aut 
245 1 0 |a Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.09.2019 
500 |a Date Revised 05.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. 
520 |a Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Brachypodium distachyon 
650 4 |a Rhizoctonia solani 
650 4 |a biotroph 
650 4 |a disease resistance 
650 4 |a necrotroph 
650 4 |a rice 
650 4 |a salicylic acid (SA) 
650 4 |a sheath blight 
650 7 |a Plant Growth Regulators  |2 NLM 
650 7 |a RNA, Messenger  |2 NLM 
650 7 |a Salicylic Acid  |2 NLM 
650 7 |a O414PZ4LPZ  |2 NLM 
700 1 |a Kimura, Mamiko  |e verfasserin  |4 aut 
700 1 |a Watanabe, Megumi  |e verfasserin  |4 aut 
700 1 |a Kusunoki, Kazuki  |e verfasserin  |4 aut 
700 1 |a Osaka, Daiki  |e verfasserin  |4 aut 
700 1 |a Suzuki, Tomoko  |e verfasserin  |4 aut 
700 1 |a Matsui, Hidenori  |e verfasserin  |4 aut 
700 1 |a Yamamoto, Mikihiro  |e verfasserin  |4 aut 
700 1 |a Ichinose, Yuki  |e verfasserin  |4 aut 
700 1 |a Toyoda, Kazuhiro  |e verfasserin  |4 aut 
700 1 |a Matsuura, Takakazu  |e verfasserin  |4 aut 
700 1 |a Mori, Izumi C  |e verfasserin  |4 aut 
700 1 |a Hirayama, Takashi  |e verfasserin  |4 aut 
700 1 |a Minami, Eiichi  |e verfasserin  |4 aut 
700 1 |a Nishizawa, Yoko  |e verfasserin  |4 aut 
700 1 |a Inoue, Komaki  |e verfasserin  |4 aut 
700 1 |a Onda, Yoshihiko  |e verfasserin  |4 aut 
700 1 |a Mochida, Keiichi  |e verfasserin  |4 aut 
700 1 |a Noutoshi, Yoshiteru  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 217(2018), 2 vom: 21. Jan., Seite 771-783  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:217  |g year:2018  |g number:2  |g day:21  |g month:01  |g pages:771-783 
856 4 0 |u http://dx.doi.org/10.1111/nph.14849  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 217  |j 2018  |e 2  |b 21  |c 01  |h 771-783