Engineering 2D Nanofluidic Li-Ion Transport Channels for Superior Electrochemical Energy Storage

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 46 vom: 27. Dez.
Auteur principal: Yan, Chunshuang (Auteur)
Autres auteurs: Lv, Chade, Zhu, Yue, Chen, Gang, Sun, Jingxue, Yu, Guihua
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article energy storage lithium batteries nanofluidic channels stacked nanosheets two-dimensional
LEADER 01000caa a22002652c 4500
001 NLM277133653
003 DE-627
005 20250222114536.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201703909  |2 doi 
028 5 2 |a pubmed25n0923.xml 
035 |a (DE-627)NLM277133653 
035 |a (NLM)29044794 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Chunshuang  |e verfasserin  |4 aut 
245 1 0 |a Engineering 2D Nanofluidic Li-Ion Transport Channels for Superior Electrochemical Energy Storage 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Rational surface engineering of 2D nanoarchitectures-based electrode materials is crucial as it may enable fast ion transport, abundant-surface-controlled energy storage, long-term structural integrity, and high-rate cycling performance. Here we developed the stacked ultrathin Co3 O4 nanosheets with surface functionalization (SUCNs-SF) converted from layered hydroxides with inheritance of included anion groups (OH- , NO3- , CO32- ). Such stacked structure establishes 2D nanofluidic channels offering extra lithium storage sites, accelerated Li-ion transport, and sufficient buffering space for volume change during electrochemical processes. Tested as an anode material, this unique nanoarchitecture delivers high specific capacity (1230 and 1011 mAh g-1 at 0.2 and 1 A g-1 , respectively), excellent rate performance, and long cycle capability (1500 cycles at 5 A g-1 ). The demonstrated advantageous features by constructing 2D nanochannels in nonlayered materials may open up possibilities for designing high-power lithium ion batteries 
650 4 |a Journal Article 
650 4 |a energy storage 
650 4 |a lithium batteries 
650 4 |a nanofluidic channels 
650 4 |a stacked nanosheets 
650 4 |a two-dimensional 
700 1 |a Lv, Chade  |e verfasserin  |4 aut 
700 1 |a Zhu, Yue  |e verfasserin  |4 aut 
700 1 |a Chen, Gang  |e verfasserin  |4 aut 
700 1 |a Sun, Jingxue  |e verfasserin  |4 aut 
700 1 |a Yu, Guihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 46 vom: 27. Dez.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:29  |g year:2017  |g number:46  |g day:27  |g month:12 
856 4 0 |u http://dx.doi.org/10.1002/adma.201703909  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 46  |b 27  |c 12