The multiple facets of root iron reduction
© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 68(2017), 18 vom: 02. Nov., Seite 5021-5027 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Calcicole plants coumarins iron phosphate plant nutrition redox processes Soil Phosphorus 27YLU75U4W mehr... |
Zusammenfassung: | © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. The biological significance of iron (Fe) is based on its propensity to oscillate between the ferric and ferrous forms, a transition that also affects its phyto-availability in soils. With the exception of grasses, Fe3+ is unavailable to plants. Most angiosperms employ a reduction-based Fe uptake mechanism, which relies on enzymatic reduction of ferric iron as an obligatory, rate-limiting step prior to uptake. This system functions optimally in acidic soils. Calcicole plants are, however, exposed to environments that are alkaline and/or have suboptimal availability of phosphorous, conditions under which the enzymatic reduction mechanism ceases to work effectively. We propose that auxiliary, non-enzymatic Fe reduction can be of critical importance for conferring fitness to plants thriving in alkaline soils with low bioavailability of Fe and/or phosphorus |
---|---|
Beschreibung: | Date Completed 05.07.2018 Date Revised 05.07.2018 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erx320 |