Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration

© 2017 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 24(2018), 4 vom: 06. Apr., Seite 1538-1547
1. Verfasser: Liang, Liyin L (VerfasserIn)
Weitere Verfasser: Arcus, Vickery L, Heskel, Mary A, O'Sullivan, Odhran S, Weerasinghe, Lasantha K, Creek, Danielle, Egerton, John J G, Tjoelker, Mark G, Atkin, Owen K, Schipper, Louis A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arrhenius climate change heat capacity leaf respiration macromolecular rate theory temperature response thermodynamics
LEADER 01000caa a22002652c 4500
001 NLM276996941
003 DE-627
005 20250222111949.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13936  |2 doi 
028 5 2 |a pubmed25n0923.xml 
035 |a (DE-627)NLM276996941 
035 |a (NLM)29030907 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Liyin L  |e verfasserin  |4 aut 
245 1 0 |a Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.11.2018 
500 |a Date Revised 20.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 John Wiley & Sons Ltd. 
520 |a Temperature is a crucial factor in determining the rates of ecosystem processes, for example, leaf respiration (R) - the flux of plant respired CO2 from leaves to the atmosphere. Generally, R increases exponentially with temperature and formulations such as the Arrhenius equation are widely used in earth system models. However, experimental observations have shown a consequential and consistent departure from an exponential increase in R. What are the principles that underlie these observed patterns? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory (TST) for enzyme-catalyzed kinetics, provides a thermodynamic explanation for the observed departure and the convergent temperature response of R using a global database. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration would theoretically reach a maximum (the optimum temperature, Topt ), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf ) and the overall curvature of the log(rate) versus temperature plot (the change in heat capacity for the system, ΔCP‡). On average, the highest potential enzyme-catalyzed rates of respiratory enzymes for R are predicted to occur at 67.0 ± 1.2°C and the maximum temperature sensitivity at 41.4 ± 0.7°C from MMRT. The average curvature (average negative ΔCP‡) was -1.2 ± 0.1 kJ mol-1  K-1 . Interestingly, Topt , Tinf and ΔCP‡ appear insignificantly different across biomes and plant functional types, suggesting that thermal response of respiratory enzymes in leaves could be conserved. The derived parameters from MMRT can serve as thermal traits for plant leaves that represent the collective temperature response of metabolic respiratory enzymes and could be useful to understand regulations of R under a warmer climate. MMRT extends the classic TST to enzyme-catalyzed reactions and provides an accurate and mechanistic model for the short-term temperature response of R around the globe 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Arrhenius 
650 4 |a climate change 
650 4 |a heat capacity 
650 4 |a leaf respiration 
650 4 |a macromolecular rate theory 
650 4 |a temperature response 
650 4 |a thermodynamics 
700 1 |a Arcus, Vickery L  |e verfasserin  |4 aut 
700 1 |a Heskel, Mary A  |e verfasserin  |4 aut 
700 1 |a O'Sullivan, Odhran S  |e verfasserin  |4 aut 
700 1 |a Weerasinghe, Lasantha K  |e verfasserin  |4 aut 
700 1 |a Creek, Danielle  |e verfasserin  |4 aut 
700 1 |a Egerton, John J G  |e verfasserin  |4 aut 
700 1 |a Tjoelker, Mark G  |e verfasserin  |4 aut 
700 1 |a Atkin, Owen K  |e verfasserin  |4 aut 
700 1 |a Schipper, Louis A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 24(2018), 4 vom: 06. Apr., Seite 1538-1547  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:24  |g year:2018  |g number:4  |g day:06  |g month:04  |g pages:1538-1547 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2018  |e 4  |b 06  |c 04  |h 1538-1547