Dynamic Video Deblurring Using a Locally Adaptive Blur Model

State-of-the-art video deblurring methods cannot handle blurry videos recorded in dynamic scenes since they are built under a strong assumption that the captured scenes are static. Contrary to the existing methods, we propose a new video deblurring algorithm that can deal with general blurs inherent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 09. Okt., Seite 2374-2387
1. Verfasser: Kim, Tae Hyun (VerfasserIn)
Weitere Verfasser: Nah, Seungjun, Lee, Kyoung Mu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM276969995
003 DE-627
005 20231225013148.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2761348  |2 doi 
028 5 2 |a pubmed24n0923.xml 
035 |a (DE-627)NLM276969995 
035 |a (NLM)29028187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Tae Hyun  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Video Deblurring Using a Locally Adaptive Blur Model 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a State-of-the-art video deblurring methods cannot handle blurry videos recorded in dynamic scenes since they are built under a strong assumption that the captured scenes are static. Contrary to the existing methods, we propose a new video deblurring algorithm that can deal with general blurs inherent in dynamic scenes. To handle general and locally varying blurs caused by various sources, such as moving objects, camera shake, depth variation, and defocus, we estimate pixel-wise varying non-uniform blur kernels. We infer bidirectional optical flows to handle motion blurs, and also estimate Gaussian blur maps to remove optical blur from defocus. Therefore, we propose a single energy model that jointly estimates optical flows, defocus blur maps and latent frames. We also provide a framework and efficient solvers to minimize the proposed energy model. By optimizing the energy model, we achieve significant improvements in removing general blurs, estimating optical flows, and extending depth-of-field in blurry frames. Moreover, in this work, to evaluate the performance of non-uniform deblurring methods objectively, we have constructed a new realistic dataset with ground truths. In addition, extensive experimental results on publicly available challenging videos demonstrate that the proposed method produces qualitatively superior performance than the state-of-the-art methods which often fail in either deblurring or optical flow estimation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nah, Seungjun  |e verfasserin  |4 aut 
700 1 |a Lee, Kyoung Mu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 10 vom: 09. Okt., Seite 2374-2387  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:10  |g day:09  |g month:10  |g pages:2374-2387 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2761348  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 10  |b 09  |c 10  |h 2374-2387