Iron removal in highly contaminated acid mine drainage using passive biochemical reactors

Passive biochemical reactors (PBRs) are a viable alternative to neutralization plants for the treatment of acid mine drainage (AMD) because they require lower investment costs and use residual materials. However, high iron (Fe) concentrations (≥0.5 g/L) in AMD are challenging for their long-term eff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 76(2017), 7-8 vom: 01. Okt., Seite 1833-1843
1. Verfasser: Genty, Thomas (VerfasserIn)
Weitere Verfasser: Bussière, Bruno, Benzaazoua, Mostafa, Neculita, Carmen M, Zagury, Gérald J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Industrial Waste Manure Sulfates Waste Water Water Pollutants, Chemical Iron E1UOL152H7
Beschreibung
Zusammenfassung:Passive biochemical reactors (PBRs) are a viable alternative to neutralization plants for the treatment of acid mine drainage (AMD) because they require lower investment costs and use residual materials. However, high iron (Fe) concentrations (≥0.5 g/L) in AMD are challenging for their long-term efficiency. Sorption and precipitation are the main Fe removal mechanisms, but the relative importance of each is mostly unknown. In this study, locally available natural materials (organic and inorganic) were characterized and tested for their performance in Fe removal from highly contaminated AMD (pH 3.5, 4 g/L of Fe, and 9 g/L of sulfate). Iron retention capacity of the materials was then evaluated and the efficiency of eight mixtures of materials was compared through 40-day laboratory batch tests. All batch-type PBRs increased the pH up to 6.5 and decreased dissolved metals concentrations, including Fe, up to 99%. Results showed that organic residual materials (manures, municipal wastewater sludge, and compost) were the best substrates for Fe removal.These findings allowed for the selection of three reactive mixtures with distinct characteristics (mixture #1 - 30% organic wastes; mixture #4 - 50% calcite; and mixture #7 - 50% sand) to be further evaluated in column type PBRs
Beschreibung:Date Completed 08.01.2018
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2017.362