Online Low-Rank Representation Learning for Joint Multi-Subspace Recovery and Clustering
Benefiting from global rank constraints, the low-rank representation (LRR) method has been shown to be an effective solution to subspace learning. However, the global mechanism also means that the LRR model is not suitable for handling large-scale data or dynamic data. For large-scale data, the LRR...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 15. Jan., Seite 335-348 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |