Effectiveness of terrestrial protected areas for conservation of lake fish communities

© 2017 Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 32(2018), 3 vom: 15. Juni, Seite 607-618
1. Verfasser: Chu, Cindy (VerfasserIn)
Weitere Verfasser: Ellis, Lucy, de Kerckhove, Derrick T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't América del Norte North America ecological indicators efectividad effectiveness espectro del tamaño fishes indicadores ecológicos mehr... lagos lakes peces protected areas size spectrum áreas protegidas 保护区 北美 径谱 效力 湖泊 生态指标 鱼类
Beschreibung
Zusammenfassung:© 2017 Society for Conservation Biology.
Freshwater protected areas are rare even though freshwater ecosystems are among the most imperiled in the world. Conservation actions within terrestrial protected areas (TPAs) such as development or resource extraction regulations may spill over to benefit freshwater ecosystems within their boundaries. Using data from 175 lakes across Ontario, Canada, we compared common indicators of fish-assemblage status (i.e., species richness, Shannon diversity index, catch per unit effort, and normalized-length size spectrum slopes) to evaluate whether TPAs benefit lake fish assemblages. Nearest neighbor cluster analysis was used to generate pairs of lakes: inside versus outside, inside versus bordering, and bordering versus outside TPAs based on lake characteristics. The diversity and abundance indicators did not differ significantly across comparisons, but normalized-length size spectrum slopes (NLSS) were significantly steeper in lakes outside parks. The latter indicated assemblage differences (greater abundances of small-bodied species) and less-efficient energy transfer through the trophic levels of assemblages outside parks. Although not significantly different, pollution- and turbidity-tolerant species were more abundant outside parks, whereas 3 of the 4 pollution-intolerant species were more abundant within parks. Twenty-one percent of the difference in slopes was related to higher total dissolved solids concentrations and angling pressure. Our results support the hypothesis that TPAs benefit lake fish assemblages and suggest that NLSS slopes are informative indicators for aquatic protected area evaluations because they represent compositional and functional aspects of communities
Beschreibung:Date Completed 17.10.2019
Date Revised 17.10.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1523-1739
DOI:10.1111/cobi.13034