On-Demand Reconfiguration of Nanomaterials : When Electronics Meets Ionics

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 1 vom: 01. Jan.
1. Verfasser: Lee, Jihang (VerfasserIn)
Weitere Verfasser: Lu, Wei D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review magnetoelectric effect memristive systems neuromorphic computing plasmonic switching resistive switching
LEADER 01000naa a22002652 4500
001 NLM276543211
003 DE-627
005 20231225012240.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201702770  |2 doi 
028 5 2 |a pubmed24n0921.xml 
035 |a (DE-627)NLM276543211 
035 |a (NLM)28985005 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Jihang  |e verfasserin  |4 aut 
245 1 0 |a On-Demand Reconfiguration of Nanomaterials  |b When Electronics Meets Ionics 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Rapid advances in the semiconductor industry, driven largely by device scaling, are now approaching fundamental physical limits and face severe power, performance, and cost constraints. Multifunctional materials and devices may lead to a paradigm shift toward new, intelligent, and efficient computing systems, and are being extensively studied. Herein examines how, by controlling the internal ion distribution in a solid-state film, a material's chemical composition and physical properties can be reversibly reconfigured using an applied electric field, at room temperature and after device fabrication. Reconfigurability is observed in a wide range of materials, including commonly used dielectric films, and has led to the development of new device concepts such as resistive random-access memory. Physical reconfigurability further allows memory and logic operations to be merged in the same device for efficient in-memory computing and neuromorphic computing systems. By directly changing the chemical composition of the material, coupled electrical, optical, and magnetic effects can also be obtained. A survey of recent fundamental material and device studies that reveal the dynamic ionic processes is included, along with discussions on systematic modeling efforts, device and material challenges, and future research directions 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a magnetoelectric effect 
650 4 |a memristive systems 
650 4 |a neuromorphic computing 
650 4 |a plasmonic switching 
650 4 |a resistive switching 
700 1 |a Lu, Wei D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 1 vom: 01. Jan.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:1  |g day:01  |g month:01 
856 4 0 |u http://dx.doi.org/10.1002/adma.201702770  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 1  |b 01  |c 01